High-Order Adaptive Methods for Fractional Differential Equations Using a Reduced Kernel Formulation
نویسندگان
چکیده
High-order adaptive methods for fractional differential equations are proposed. The methods rely on a kernel reduction method for the approximation and localization of the history term. To avoid complications typical to multistep methods, we focus our study on 1-step methods and approximate the local part of the fractional integral by integral deferred correction to enable high order accuracy. We present numerical results obtained with both implicit and the explicit methods applied to different problems.
منابع مشابه
Solving multi-order fractional differential equations by reproducing kernel Hilbert space method
In this paper we propose a relatively new semi-analytical technique to approximate the solution of nonlinear multi-order fractional differential equations (FDEs). We present some results concerning to the uniqueness of solution of nonlinear multi-order FDEs and discuss the existence of solution for nonlinear multi-order FDEs in reproducing kernel Hilbert space (RKHS). We further give an error a...
متن کاملA spectral method based on Hahn polynomials for solving weakly singular fractional order integro-differential equations
In this paper, we consider the discrete Hahn polynomials and investigate their application for numerical solutions of the fractional order integro-differential equations with weakly singular kernel .This paper presented the operational matrix of the fractional integration of Hahn polynomials for the first time. The main advantage of approximating a continuous function by Hahn polynomials is tha...
متن کاملThe Combined Reproducing Kernel Method and Taylor Series for Handling Fractional Differential Equations
This paper presents the numerical solution for a class of fractional differential equations. The fractional derivatives are described in the Caputo cite{1} sense. We developed a reproducing kernel method (RKM) to solve fractional differential equations in reproducing kernel Hilbert space. This method cannot be used directly to solve these equations, so an equivalent transformation is made by u...
متن کاملHigh-Order Accurate Adaptive Kernel Compression Time-Stepping Schemes for Fractional Differential Equations
High-order adaptive methods for fractional differential equations are proposed. The methods rely on a kernel compression scheme for the approximation and localization of the history term. To avoid complications typical to multistep methods, we focus our study on 1-step methods and approximate the local part of the fractional integral by integral deferred correction to enable high order accuracy...
متن کاملExtremal Positive Solutions For The Distributed Order Fractional Hybrid Differential Equations
In this article, we prove the existence of extremal positive solution for the distributed order fractional hybrid differential equation$$int_{0}^{1}b(q)D^{q}[frac{x(t)}{f(t,x(t))}]dq=g(t,x(t)),$$using a fixed point theorem in the Banach algebras. This proof is given in two cases of the continuous and discontinuous function $g$, under the generalized Lipschitz and Caratheodory conditions.
متن کامل